

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

October/November 2012
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
Section A		
В6		
В7		
B8		
В9		
Total		

This document consists of 17 printed pages and 3 blank pages.

DC (NH/SW) 42387/4 © UCLES 2012

[Turn over

Section A

For Examiner's Use

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

A 1	(a)	Define the term <i>compound</i> .
	(b)	Choose from the following compounds to answer the questions below.
		calcium carbonate
		carbon dioxide
		carbon monoxide
		ethane
		glucose
		methane
		propane
		sodium oxide
		sucrose
		water
		zinc oxide
		Each compound can be used once, more than once or not at all.
		Which compound
		(i) is a product of fermentation,
		(ii) reacts with both hydrochloric acid and aqueous sodium hydroxide, [1]
	(iii) reacts with hydrochloric acid to form a gas which turns limewater milky, [1]
	(iv) is formed by the thermal decomposition of limestone,
		(v) is a hydrocarbon formed by the bacterial decay of vegetable matter,
	(vi) is a product of the incomplete combustion of a hydrocarbon?
		[1]

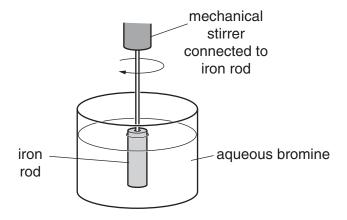
(c) Draw a 'dot-and-cross' diagram for a molecule of water. Show only the outer shell electrons.

For Examiner's Use

[2]

[Total: 9]

A2 A student heated different mixtures of metals and metal oxides. The table shows his results.


For
Examiner's
Use

mixture	reacts or no reaction
iron(III) oxide + zinc	reacts
lead(II) oxide + iron	reacts
lead(II) oxide + zinc	reacts
magnesium oxide + zinc	no reaction

		magnesium oxide + zinc	110 Teaction	
(a)	(i)	Predict the order of reactivity of the	e metals iron, lead, magnesium and zir	ıc.
		least reactive	→ most rea	active
				[1]
	(ii)	Construct the equation for the reproducts are zinc oxide, ZnO, and	eaction of iron(III) oxide, Fe_2O_3 , with iron.	zinc. The
				[1]
(b)		minium is high in the reactivity serie	es but does not appear to react with eit	ther water
	(i)	Explain why aluminium appears to	be unreactive.	
				[2]
	(ii)	Explain why aluminium is used in t	the manufacture of aircraft.	
				[1]
	(iii)	Only one naturally-occurring isotop State the number of protons and n	pe of aluminium is known. neutrons in this isotope of aluminium.	
		number of protons		
		number of neutrons		[1]
				[Total: 6]

A3 The rate of reaction of iron with aqueous bromine is determined using the apparatus shown below.

For Examiner's Use

The iron is removed at regular intervals. It is washed, dried and then weighed. The iron is then replaced in the solution.

The experiment is repeated twice, each time with a different concentration of aqueous bromine.

The results are shown in the table below.

concentration of aqueous bromine mol/dm ³	speed of reaction mg iron reacted/min
0.050	9.2
0.10	18.1
0.15	27.2

(a) (i)	Describe how and explain why the speed of this reaction changes with the concentration of bromine.
	[2]
(ii)	Describe and explain the effect of temperature on the speed of this reaction.
	[2]
(iii)	Suggest another method of measuring the speed of this reaction.
	[1]

(b) The equation for the reaction is

Fe + Br₂
$$\rightarrow$$
 FeBr₂ $\Delta H = -250 \,\text{kJ/mol}$

- For Examiner's Use
- (i) Construct two half-equations for this reaction to show electron loss and gain.

[2]

- (ii) Draw a labelled enthalpy profile diagram for the overall reaction. On your diagram include
 - the enthalpy change of reaction,
 - the activation energy,
 - reactants,
 - products.

[3]

[Total: 10]

A 4	Woo	d is made u	p of many different carbon compounds.	For
	(a)	Describe ho	ow carbon compounds are made in plants by photosynthesis.	xaminer's Use
	(b)	When wood decompose	d is heated in the absence of air, the carbon compounds in the wood	
			wood chips cold water distillate	
		The distillate	e contains a number of organic compounds, including	
			ethanoic acid	
			ethanal	
			ethanol	
			methanol	
			calcium hydroxide is added to the distillate, it neutralises the ethanoic acid. the salt formed in this neutralisation.	
			[1]	
			at physical property of ethanal does this distillation depend?	
			[1]	

(iii) The composition by mass of ethanal is C 54.5%, H 9.1%, O 36.4%. Calculate the empirical formula of ethanal.

For Examiner's Use

[2]

- (c) Ethanol reacts with ethanoic acid to form the ester ethyl ethanoate.
 - (i) Complete the following formula for ethyl ethanoate.

[1]

(ii) State a commercial use for esters.

|--|

[Total: 9]

A 5	not A v	react olatile	an be refined by reacting the impure metal with carbon monoxide. The impurities do with carbon monoxide. compound called nickel carbonyl is formed. ecomposed to give pure nickel and carbon monoxide.	For Examiner's Use
	(a)	(i)	Explain the meaning of the term <i>volatile</i> .	
			[1]	
		(ii)	Suggest how nickel carbonyl might be decomposed.	
			[1]	
		(iii)	Explain how this method separates nickel from its impurities.	
			[1]	
	(b)	The	tel carbonyl has the formula Ni(CO) _x . relative molecular mass of nickel carbonyl is 171. culate the value of x.	
			value of x =[1]	
	(c)	Drav	kel is refined by electrolysis in a similar way to copper. w a labelled diagram of the apparatus you would use to purify nickel by electrolysis are laboratory.	
			[4]	
	(d)		kel is a metal. e three physical properties shown by all metals.	
			[3]	

[Total: 11]

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

B6 Seawater contains chloride, bromide and iodide ions. Bromine can be manufactured by bubbling chlorine through seawater.

$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Cl^-$$

(a)	(i)	Explain why the reaction of chlorine with bromide ions involves both oxidation reduction.	and
			[2]
	(ii)	Describe how you could determine the pH of the resulting solution.	
	(iii)	Explain why iodine will not displace bromine from seawater.	ra·
			[1

(b) Bromine reacts with many elements to form bromides. The table shows the boiling points and electrical conductivity for the bromides A, B, C and D.

bromide	boiling point / °C	electrical conductivity when molten
Α	1435	conducts
В	916	conducts
С	154	does not conduct
D	173	does not conduct

Which two bromides are bonded covalently? Give a reason for your answer.	

.....[1]

(c) Chlorine reacts with cold dilute sodium hydroxide to form sodium chlorate(I), NaClO, sodium chloride and water.

Construct an equation for this reaction.

(d)	The concentration of sodium chlorate(I) in a solution can be found by reacting sodium
	chlorate(I) with excess acidified potassium iodide and then titrating the iodine liberated
	with aqueous sodium thiosulfate, Na ₂ S ₂ O ₃ .

For Examiner's Use

$$\mathrm{I_2} \ + \ 2\mathrm{Na_2S_2O_3} \ \longrightarrow \ 2\mathrm{NaI} \ + \ \mathrm{Na_2S_4O_6}$$

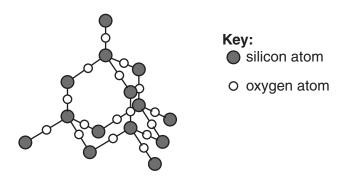
A solution of sodium thiosulfate contains 12.4g of sodium thiosulfate, $Na_2S_2O_3.5H_2O$, in $1.00\,\mathrm{dm^3}$ of solution.

(i) Calculate the concentration of the sodium thiosulfate solution in mol/dm³.

concentration = mol/dm³ [1]

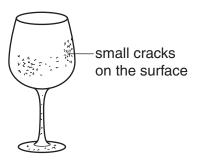
(ii) 23.6 cm³ of this sodium thiosulfate solution reacts with exactly 12.5 cm³ of aqueous iodine.

Calculate the concentration, in mol/dm^3 , of the aqueous iodine.


[3]

[Total: 10]

B7 Glass contains silicon(IV) oxide and a number of metal oxides.


For Examiner's Use

(a) The structure of silicon(IV) oxide is shown below.

(1)	Describe two similarities in the structure of silicon(IV) oxide and diamond.	
		[2
(ii)	Explain why silicon(IV) oxide has a high melting point.	
		[2
(iii)	Explain why silicon(IV) oxide does not conduct electricity.	L
		[1]

(b) Old wine glasses often appear cloudy because they have many small cracks on their surface.

The cracks are caused by differences in the rate of diffusion of sodium ions and hydrogen ions in the glass.

(1)	Explain the meaning of the term <i>diffusion</i> .	
		[1]
(ii)	Suggest why sodium and hydrogen ions do not diffuse at the same rate.	[.]
		[1]

(c) Sodium oxide is an ionic compound.

Draw a 'dot-and-cross' diagram to show

For Examiner's Use

- the arrangement of the outer shell electrons,
- the charges on the ions and
- the formula of sodium oxide.

[3]

[Total: 10]

Many fertilisers contain phosphate ions and nitrate ions.												
((a)	Ехр	lain why farmers put fertilisers on the soil.	Ex								
((b)	Why should the chemicals in fertilisers be soluble in water?										
((c)) Ammonium nitrate, NH_4NO_3 , and ammonium sulfate, $(NH_4)_2SO_4$, are commonly used in fertilisers.										
		(i)	Calculate the percentage of nitrogen by mass in ammonium nitrate.									
			[3]									
		(ii)	Describe how crystals of ammonium sulfate can be prepared from aqueous ammonia.									
			[4]									
((d)		formula of calcium phosphate is ${\rm Ca_3(PO_4)_2}$. this formula to deduce the charge on the phosphate ion.									
((d)		formula of calcium phosphate is $Ca_3(PO_4)_2$.									

For Examiner's Use

В9			and sodium hydroxide are manufactured by the electrolysis of concentrated sodium chloride.
	(a)	(i)	Chlorine can be used to bleach wood pulp. Name another chemical that can be used to bleach wood pulp.
			[1]
		(ii)	Explain the purpose of chlorine in water purification.
			[1]
	(b)		orine is used to make chloroethene. structure of chloroethene is shown below.
			H H
		(i)	Draw the structure of the polymer poly(chloroethene).
			[2]
		(ii)	Chloroethene is an unsaturated compound. Describe a positive test for an unsaturated compound.
			test
			result[2]

(c)		lium hydroxide is a typical alkali. eacts with ethanoic acid to form water and the ionic salt, sodium ethanoate.	For Examiner's Use
	(i)	Write the formula for the ethanoate ion showing all atoms and bonds.	
		[1]	
	(ii)	Construct the ionic equation for the reaction of ethanoic acid with sodium hydroxide.	
		[1]	
(d)	Cor	npounds containing hydroxide ions can be added to the soil to reduce its acidity.	
	(i)	Explain why adding hydroxide ions to the soil can cause the loss of nitrogen from fertilisers containing ammonium salts.	
	(ii)	Construct an ionic equation for this reaction.	
		[1]	
		[Total: 10]	

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4	Helium C		Ne	Neon 10	40	Ā	Argon 18	84	궃	Krypton 36	131	Xe	Xenon 54	222	Ru	Radon 86				175	ב ב
		II/			19	ш	Fluorine 9	35.5	CI	Chlorine 17	80	ā	Bromine 35	127	_	lodine 53	210	Αt	Astatine 85				173	Υb
		IN			16	0	Oxygen 8	32	တ		62	Se	Selenium 34	128	<u>P</u>	Tellurium 52	209	Ьо	Polonium 84				169	E ,
		>			41	z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Ξ	Bismuth 83				167	<u>й</u>
		2			12	ပ	Carbon 6	28		Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Pb	Lead 82				165	운
		≡			=	Δ	Boron 5	27	1 Y	Aluminium 13	20	Са	Gallium 31	115	In	Indium 49	204	11	Thallium 81				162	٥
S												Zu	Zinc 30	112	ဦ	Cadmium 48	201	Hg	Mercury 80				159	임
The Periodic Table of the Elements											64	n O	Copper 29	108	Ag	Silver 47	197	Αn	Gold 79				157	gg
e of the	dno										59	Z	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78				152	Eu
dic Table	Group										59	ပိ	Cobalt 27	103	絽	Rhodium 45	192	ı	Iridium 77				150	Sm
ne Perio			- 3	Hydrogen	-						56	Бe	Iron 26	101	Bu	Ruthenium 44	190	SO	Osmium 76				147	Pm
Ė											55	Mn	Manganese 25		ဥ	Technetium 43	186	Be	Rhenium 75				144	PZ :
											52	ပ်	Ε	96	Mo	Molybdenum 42	184	>	Tungsten 74				141	ቯ
											51	>	Vanadium 23	93	QN	Niobium 41	181	Та	Tantalum 73				140	ပီ
											48	F	Titanium 22	91	Zr	Zirconium 40	178	Ξ	Hafnium 72					
											45	သင	Scandium 21	89	>	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Actinium 89 †	d sprips	series
		=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ва	Radium 88	* 58_71 Lanthanoid series	† 90–103 Actinoid series
		_			7	=	Lithium 3	23	Na	Sodium 11	39	¥	Potassium 19	85	Rb	Rubidium 37	133	Cs	Caesium 55	223	Ļ	Francium 87	* 58-71	† 90–103
2012												50	70/22	/0/	NI/1	2							-	

260 **Lr** Lawrendum 103 Lutetium Ytterbium Nobelium **H**allium 258 **Md** 69 257 **Fm** Fermium 100 Erbium 89 **P** 252 **ES** Californium Dysprosium | 66 247 **BK**Berkelium
1 97 **Tb** 65 **Gad**Olinium 64 **Curium Europium** 243 **Am** Americium Samarium 62 244 **Pu** Promethium 61 Pm 237 **Np** Neodymium ğ 09 Praseodymium 59 Ā 231 **Pa S**erium 232 **Th** Thorium 28 90 b = atomic (proton) number a = relative atomic mass X = atomic symbol

Key

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).